Why stacking oranges bears fruit for modern communications


THAT’S MATHSAN INTERNATIONAL workshop on packing problems took place in Trinity College Dublin earlier this week. Packing problems are concerned with storing objects as densely as possible in a container. Usually the goods and the container are of fixed shape and size.

The Foams and Complex Systems Group in TCD have recently discovered some new dense packings of spheres in cylindrical columns. Many packing problems arise in the context of industrial packaging, storage and transport, in biological systems, in crystal structures and in carbon nanotubes (tiny molecular-scale pipes).

Packing problems illustrate the interplay between pure and applied mathematics. They arise in practical situations but are then generalised and studied in an abstract mathematical context. The general results then find application in new practical situations. A specific example of this interplay is the sphere-packing problem.

In 1600, the adventurer Walter Raleigh asked his mathematical adviser Thomas Harriot about the most efficient way of stacking cannon balls on a ship’s deck. Harriot wrote to the famous astronomer Johannes Kepler, who formulated a conjecture that a so-called “face-centred cubic” was the optimal arrangement.

Let’s start with a simpler problem: how much of the table-top can you cover with non-overlapping €1 coins? Circular discs can be arranged quite densely in a plane. If they are set in a square formation, they cover about 79 cent of the surface. But a hexagonal arrangement, such as a honeycomb, with each coin touching six others, covers over 90 per cent; that’s pretty good. Joseph-Louis Lagrange showed in 1773 that no regular arrangement of discs does better than this. But what about irregular arrangements? It took until 1940 to rule them out.

In three dimensions, we could start with a layer of spheres arranged in a hexagonal pattern like the coins, and then build up successive layers, placing spheres in the gaps left in the layer below. This is how grocers instinctively pile oranges, and gunners stack cannon balls. The geometry is a bit trickier than in two dimensions, but it is not too difficult to show that this arrangement gives a packing density of 74 per cent. The great Carl Friedrich Gauss showed this is the best that can be done for a regular or lattice arrangement of spheres.

But again we ask: what about irregular arrangements? Is it not possible to find some exotic method of packing the spheres more densely? Kepler’s conjecture says no, and the problem has interested great mathematicians in the intervening 400 years. In 1900 David Hilbert listed 23 key problems for 20th century mathematicians, and the sphere-packing puzzle was part of his 18th problem.

In 1998 Thomas Hales announced a proof of Kepler’s Conjecture. He broke the problem into a large number of special cases and attacked each one separately. But there were some 100,000 cases, each requiring heavy calculation, far beyond human capacity, so his proof depended in an essential way upon using a computer.

After detailed review, Hales’ work was finally published in 2005 in a 120-page paper in Annals of Mathematics. Thus, Kepler’s Conjecture has become Hales’ Theorem. Most mathematicians accept that the matter is resolved, but there remains some discomfort about reliance on computers to establish mathematical truth.

Why should we concern ourselves with a problem for which grocers and cannoneers knew the solution long ago? Well, in higher dimensions the corresponding problem has more intriguing aspects. It is a key result in data communication: to minimise transmission errors, we design codes that are based on maximising the packing density of hyper-spheres in high- dimensional spaces. So the apparently abstruse conjecture of Kepler has some eminently practical implications for our technological world.

Peter Lynch is professor of meteorology at the school of mathematical sciences, University College Dublin. Visit his blog, thatsmaths.com

The Irish Times Logo
Commenting on The Irish Times has changed. To comment you must now be an Irish Times subscriber.
The account details entered are not currently associated with an Irish Times subscription. Please subscribe to sign in to comment.
Comment Sign In

Forgot password?
The Irish Times Logo
Thank you
You should receive instructions for resetting your password. When you have reset your password, you can Sign In.
The Irish Times Logo
Screen Name Selection


Please choose a screen name. This name will appear beside any comments you post. Your screen name should follow the standards set out in our community standards.

The Irish Times Logo
Commenting on The Irish Times has changed. To comment you must now be an Irish Times subscriber.
Forgot Password
Please enter your email address so we can send you a link to reset your password.

Sign In

Your Comments
We reserve the right to remove any content at any time from this Community, including without limitation if it violates the Community Standards. We ask that you report content that you in good faith believe violates the above rules by clicking the Flag link next to the offending comment or by filling out this form. New comments are only accepted for 3 days from the date of publication.